Channel-interacting PDZ protein, 'CIPP', interacts with proteins involved in cytoskeletal dynamics.
نویسندگان
چکیده
Neuronal CIPP (channel-interacting PDZ protein) is a multivalent PDZ protein that interacts with specific channels and receptors highly expressed in the brain. It is composed of four PDZ domains that behave as a scaffold to clusterize functionally connected proteins. In the present study, we selected a set of potential CIPP interactors that are involved directly or indirectly in mechanisms of cytoskeletal remodelling and membrane protrusion formation. For some of these, we first proved the direct binding to specific CIPP PDZ domains considered as autonomous elements, and then confirmed the interaction with the whole protein. In particular, the small G-protein effector IRSp53 (insulin receptor tyrosine kinase substrate protein p53) specifically interacts with the second PDZ domain of CIPP and, when co-transfected in cultured mammalian cells with a tagged full-length CIPP, it induces a marked reorganization of CIPP cytoplasmic localization. Large punctate structures are generated as a consequence of CIPP binding to the IRSp53 C-terminus. Analysis of the puncta nature, using various endocytic markers, revealed that they are not related to cytoplasmic vesicles, but rather represent multi-protein assemblies, where CIPP can tether other potential interactors.
منابع مشابه
The multivalent PDZ domain-containing protein CIPP is a partner of acid-sensing ion channel 3 in sensory neurons.
Acid-sensing ion channels (ASICs) are cationic channels activated by extracellular pH. They are present in the brain, where they are thought to participate in signal transduction associated with local pH variations, and in sensory neurons, where they have been involved in pain perception associated with tissue acidosis and in mechanoperception. The ASIC3 subunit is mainly expressed in dorsal ro...
متن کاملThe serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins.
The 5-hydroxytryptamine type 2A (5-HT(2A)) receptor and the 5-HT(2C) receptor are closely related members of the G-protein-coupled receptors activated by serotonin that share very similar pharmacological profiles and cellular signaling pathways. These receptors express a canonical class I PDZ ligand (SXV) at their C-terminal extremity. Here, we have identified proteins that interact with the PD...
متن کاملInteraction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non-voltage gated sodium channels BNC1 (brain Na+ channel 1) and ASIC (acid-sensing ion channel).
Neuronal members of the degenerin/epithelial Na(+) channel (DEG/ENaC) family of cation channels include the mammalian brain Na(+) channel 1 (BNC1), acid-sensing ion channel (ASIC) and dorsal-root acid-sensing ion channel (DRASIC). Their response to acidic pH, their sequence similarity to nematode proteins involved in mechanotransduction and their modulation by neuropeptides suggest that they ma...
متن کاملPDZ domain protein-protein interactions: a case study with PICK1.
Using PICK1 as an example this review highlights PDZ domains support a repertoire of protein-protein interactions that regulate the subcellular localisation and function of receptors, ion channels and enzymes. PICK1 is a 416 amino acid protein that contains a PDZ domain, a coiled-coil motif/arfaptin homology domain and an acidic c-terminal. Nearly all proteins thus far reported to interact with...
متن کاملPDZ Domain Recognition: Insight from Human Tax-Interacting Protein 1 (TIP-1) Interaction with Target Proteins
Cellular signaling is primarily directed via protein-protein interactions. PDZ (PSD-95/Discs large/ZO-1 homologous) domains are well known protein-protein interaction modules involved in various key signaling pathways. Human Tax-interacting protein 1 (TIP-1), also known as glutaminase interaction protein (GIP), is a Class I PDZ domain protein that recognizes the consensus binding motif X-S/T-X-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 419 2 شماره
صفحات -
تاریخ انتشار 2009